Normal (mathematics)
The term normal in mathematics is used in the following broad senses:
- To denote something upright or perpendicular
- To denote something that is as it should be. In this sense, normal means good or desirable rather than typical
It is typically used as a limiting adjective, and in a binary sense. In other words, an object in a certain class is normal if it satisfies certain conditions, and every object in that class is either normal or not normal. The noun form is normality. Thus, normality can be viewed as a property in various contexts.
In group theory
Normal subgroup: A subgroup of a group that occurs as the kernel of a homomorphism, or equivalently, such that every left coset and right coset are equal.
Related terms: Normality (the property of a subgroup being normal), normal core (the largest normal subgroup contained in a given subgroup), normal closure (the smallest normal subgroup containing a given subgroup), normalizer (the largest subgroup containing a given subgroup, in which it is normal), normal automorphism (an automorphism that restricts to an automorphism on every normal subgroup).
Term variations: subnormal subgroup, abnormal subgroup, quasinormal subgroup, and others. See Groupprops:Category:Variations of normality, Groupprops:Category:Opposites of normality, and Groupprops:Category:Analogues of normality.
Primary subject wiki entry: Groupprops:Normal subgroup. See also Groupprops:Questions:Normal subgroup.
Other subject wiki entries: Diffgeom:Normal subgroup
Coverage in guided tours: Groupprops guided tour for beginners; section not yet prepared.
Also located at: Wikipedia:Normal subgroup, Planetmath:NormalSubgroup, Mathworld:NormalSubgroup, Springer Online Reference Works, Citizendium:Normal subgroup
In topology
Normal space: A topological space is termed normal if all points are closed sets (the assumption), and any two disjoint closed subsets can be separated by disjoint open subsets.
In some definitions, the assumption is skipped.
Related terms: normality (the property of a topological space being normal)
Term variations: Variations of normality offers a list.
Primary subject wiki entry: Topospaces:Normal space
Also located at: Wikipedia:Normal space, Planetmath:NormalSpace, Mathworld:NormalSpace
In linear algebra
Normal form: also called canonical form, is a standard form in which to put a matrix (typically, upto conjugation). Two normal forms commonly used are the Jordan normal form and the rational normal form.
Normal matrix: A matrix over the complex numbers, that commutes with its conjugate-transpose.
No primary subject wiki entry.
Also located at: Wikipedia:Normal matrix, Mathworld:NormalMatrix, Planetmath:NormalMatrix
In Galois theory
Normal field extension: A field extension is termed normal if the fixed field under the automorphism group of the extension, is precisely the base field.
Primary subject wiki entry: Galois:Normal extension
Also located at: Planetmath:NormalExtension, Wikipedia:Normal extension, Mathworld:NormalExtension
In commutative algebra
Normal domain: An integral domain is termed normal if it is integrally closed in its field of fractions.
Primary subject wiki entry: Commalg:Normal domain
Normal ring: A commutative unital ring is termed normal if it is integrally closed in its total quotient ring.
Primary subject wiki entry: Commalg:Normal ring
In differential geometry
Normal to a curve in the plane: The line perpendicular to the tangent to the curve at a point.
Normal bundle to a submanifold, or immersed manifold: The quotient of the tangent bundle to the whole manifold (restricted to the submanifold), by the tangent bundle to the submanifold, or immersed manifold. When the manifolds are Riemannian, the normal bundle can be viewed as the orthogonal complement to the tangent bundle of the submanifold, in the tangent bundle to the whole manifold.
Vectors in the normal bundle are termed normal vectors.
Main subject wiki entry: Diffgeom:Normal bundle
Also located at: Wikipedia:Normal bundle, Mathworld:NormalBundle, Planetmath:NormalBundle
In normed vector spaces
In general normed vector spaces, as well as in tangent spaces to Riemannian manifolds, normalize means to scale by a factor to make the norm equal to 1.
In probability/statistics
Normal distribution: A particular kind of distribution parametrized by mean and variance, also called the Gaussian distribution.
Normal random variable: A random variable whose distribution is a normal distribution.
Others
Normal number to base : A real number that, when written in base , has all digits occurring with equal probability.
Absolutely normal number: A real number that is positive to base for every integer .